$\underline{\text { 2- Fixed point Method }}$

A fixed point of a function $g(x)$ is a real number p such that $p=g(p)$. Graphically, fixed points of a function $y=g(x)$ are the points of intersection of $y=g(x)$ and $y=x$.

Fixed point method is used to determine roots of a function $f(x)$ as follows:
1- Rearrange the equation $f(x)=0$ in the form $x=g(x)$ (so that x is on the left hand side of the equation).
2- Estimate an initial value to the root x_{i} and substitute it into $g(x)$ to get $g\left(x_{i}\right)$.
3- An improved estimation of the root is determined from $x_{i+1}=g\left(x_{i}\right)$ and so on.

Notes:

1- Fixed point method has very slow convergence.
2- For determining an expected root, lies in the interval (a, b), a certain expression of $x=g(x)$ seems to converge to this root if the absolute value of the slope of $g(x)$ is less than the slope of $y=x$, that is $\left|g^{\prime}(x)\right| \leq 1$ for all $x \in(a, b)$.

3- A certain expression of $x=g(x)$ may converge to one root at more.
4- If we can not get an expression of the form $x=g(x)$, then we could add x to both sides. For example, we can rewrite the equation $\sin x=0$ in the form $x=\sin x+x$.

Example 1: Find the maximum value of the function $y=x^{3} / 3-1.1 x^{2}-3.1 x$ correct to three decimals.

Solution:

Maximum value of the function y occurs when $y^{\prime}=0$,
$y^{\prime}=x^{2}-2.2 x-3.1$,
Put $y^{\prime}=0 \Rightarrow x^{2}-2.2 x-3.1=0 \Rightarrow f(x)=0$ (Root finding problem)
So we must find the $\operatorname{root}(\mathrm{s})$ of $f(x)$ where $f(x)=x^{2}-2.2 x-3.1$.
Check the sign of $f(x)$ at different values of x : (not necessary)

x	-2	-1	0	1	2	3	4
$f(x)$	5.3	0.1	-3.1	-4.3	-1.3	-0.7	4.1

There are two roots: The first root lies between $x=-1$ and $x=0$ and the second root lies between $x=3$ and $x=4$.
By using fixed point method, rearrange the equation $f(x)=0$ in the form $x=g(x)$:

$$
\begin{aligned}
& x^{2}-2.2 x-3.1=0 \\
& \text { either } \quad x^{2}=2.2 x+3.1 \quad \Rightarrow x=\sqrt{2.2 x+3.1} \quad \text { (the first expression) } \\
& \text { or } \quad x .(x-2.2)=3.1 \quad \Rightarrow x=\frac{3.1}{x-2.2} \quad \text { (the second expression) } \\
& \text { or } \quad 2.2 x=x^{2}-3.1 \quad \Rightarrow x=\frac{x^{2}-3.1}{2.2} \quad \text { (the third expression) }
\end{aligned}
$$

* For the first expression $x=\sqrt{2.2 x+3.1}$,

Convergence test: (not necessary)

$$
g(x)=\sqrt{2.2 x+3.1} \quad \Rightarrow \quad g^{\prime}(x)=\frac{1.1}{\sqrt{2.2 x+3.1}}
$$

- For the first root which $\in(-1,0)$,
$\left|g^{\prime}(-1)\right|=\left|\frac{1.1}{\sqrt{2.2(-1)+3.1}}\right|=1.16>1$ Not Ok, $\quad\left|g^{\prime}(0)\right|=\left|\frac{1.1}{\sqrt{2.2(0)+3.1}}\right|=0.62 \leq 1 \mathrm{Ok}$.
Thus, this expression will not converge to this root.
- For the second root which $\in(3,4)$,

$$
\left|g^{\prime}(3)\right|=\left|\frac{1.1}{\sqrt{2.2(3)+3.1}}\right|=0.35 \leq 1 \mathrm{Ok}, \quad\left|g^{\prime}(4)\right|=\left|\frac{1.1}{\sqrt{2.2(4)+3.1}}\right|=0.32 \leq 1 \mathrm{Ok}
$$

Thus, this expression will converge to this root.
$\underline{1^{\text {st }} \text { iteration: }}$ Let $x_{o}=3 \Rightarrow x_{1}=g\left(x_{o}\right) \Rightarrow x_{1}=g(3)=\sqrt{2.2(3)+3.1}=3.114482$.
$\underline{2^{\text {nd }} \text { iteration: }} x_{1}=3.114482 \Rightarrow x_{2}=g(3.114482)=\sqrt{2.2(3.114482)+3.1}=3.154657$. The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

i	x_{i}	$x_{i+1}=g\left(x_{i}\right)$	$\Delta_{i}=\left\|x_{i+1}-x_{i}\right\|$
0	3	3.114482	$0.11 \ldots$
1	3.114482	3.154657	$0.04 \ldots$
2	3.154657	3.168635	$0.01 \ldots$.
3	3.168635	3.173483	8.2×10^{-3}
4	3.173483	3.175163	1.68×10^{-3}
5	3.175163	3.175745	$5.8 \times 10^{-4}<\varepsilon$

The root is $x_{\text {root }} \approx 3.175745$.

$$
y(3.175745)=(3.175745)^{3} / 3-1.1(3.175745)^{2}-3.1(3.175745)=-4.924442 .
$$

Notes:

1- Another arrangement for the above table of calculations may be used as below:

i	x_{i}	$\Delta_{i}=\left\|x_{i}-x_{i-1}\right\|$
0	3	-
1	3.114482	$0.11 \ldots$
2	3.154657	$0.04 \ldots$
3	3.168635	$0.01 \ldots$
4	3.173483	8.2×10^{-3}
5	3.175163	1.68×10^{-3}
6	3.175745	$5.8 \times 10^{-4}<\varepsilon$

1- If we choose another initial values to the root, this expression will always converge to this root which lies in the interval $(3,4)$, for example:

i	x_{i}	$\Delta=\left\|x_{i}-x_{i-1}\right\|$
0	-1	-
1	0.948683	$1.94 \ldots$
2	2.277521	$1.32 \ldots$
3	2.847902	$0.57 \ldots$
4	3.060292	$0.21 \ldots$
5	3.135704	$0.07 \ldots$
6	3.162048	$0.02 \ldots$
7	3.171199	9.15×10^{-3}
8	3.174372	3.17×10^{-3}
9	3.175471	1.1×10^{-3}
10	3.175852	$3.81 \times 10^{-4}<\varepsilon$

i	x_{i}	$\Delta=\left\|x_{i}-x_{i-1}\right\|$
0	7	-
1	4.301163	$2.69 \ldots$
2	3.544370	$0.75 \ldots$
3	3.301153	$0.24 \ldots$
4	3.219089	$0.08 \ldots$
5	3.190924	$0.02 \ldots$
6	3.181200	9.7×10^{-3}
7	3.177836	3.3×10^{-3}
8	3.176671	1.1×10^{-3}
9	3.176268	$4 \times 10^{-4}<\varepsilon$

* For the second expression $x=\frac{3.1}{x-2.2}$,

Convergence test: (not necessary)

$$
g(x)=\frac{3.1}{x-2.2} \Rightarrow g^{\prime}(x)=\frac{-3.1}{(x-2.2)^{2}}
$$

- For the first root which $\in(-1,0)$,

$$
\left|g^{\prime}(-1)\right|=\left|\frac{-3.1}{(-1-2.2)^{2}}\right|=0.3 \leq 1 \mathrm{Ok}, \quad\left|g^{\prime}(0)\right|=\left|\frac{-3.1}{(0-2.2)^{2}}\right|=0.64 \leq 1 \mathrm{Ok}
$$

Thus, this expression will converge to this root.

- For the second root which $\in(3,4)$,

$$
\left|g^{\prime}(3)\right|=\left|\frac{-3.1}{(3-2.2)^{2}}\right|=4.8>1 \text { Not Ok, } \quad\left|g^{\prime}(4)\right|=\left|\frac{-3.1}{(4-2.2)^{2}}\right|=0.96 \leq 1 \mathrm{Ok}
$$

Thus, this expression will not converge to this root.
$\underline{1^{\text {st }} \text { iteration: }}$ Let $x_{o}=-1 \Rightarrow x_{1}=g\left(x_{o}\right) \Rightarrow x_{1}=g(-1)=\frac{3.1}{(-1)-2.2}=-0.96875$.
$\underline{2^{\text {nd }} \text { iteration: }} \quad x_{1}=-0.96875 \Rightarrow x_{2}=g(-0.96875)=\frac{3.1}{(-0.96875)-2.2}=-0.978304$.
The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

i	x_{i}	$x_{i+1}=g\left(x_{i}\right)$	$\Delta_{i}=\left\|x_{i+1}-x_{i}\right\|$
0	-1	-0.96875	$0.031 \ldots$
1	-0.96875	-0.978304	9.5×10^{-3}
2	-0.978304	-0.975363	2.9×10^{-3}
3	-0.975363	-0.976266	$9 \times 10^{-4}<\varepsilon$

The root is $x_{\text {root }} \approx-0.976266$.

$$
y(-0.976266)=(-0.976266)^{3} / 3-1.1(-0.976266)^{2}-3.1(-0.976266)=1.667862 .
$$

Thus, the maximum value of y is 1.667862 , approximately.

Note:

If we want to know which root would the third expression $x=\frac{x^{2}-3.1}{2.2}$ converge to, then we could use the convergence test:

$$
g(x)=\frac{x^{2}-3.1}{2.2} \Rightarrow g^{\prime}(x)=\frac{x}{1.1},
$$

- For the first root which $\in(-1,0)$,

$$
\left|g^{\prime}(-1)\right|=\left|\frac{-1}{1.1}\right|=0.91 \leq 1 \text { Ok, } \quad\left|g^{\prime}(0)\right|=\left|\frac{0}{1.1}\right|=0 \leq 1 \text { Ok. }
$$

Thus, this expression will converge to this root.

- For the second root which $\in(3,4)$,

$$
\left|g^{\prime}(3)\right|=\left|\frac{3}{1.1}\right|=2.7>1 \text { Not Ok, } \quad\left|g^{\prime}(4)\right|=\left|\frac{4}{1.1}\right|=3.6>1 \text { Not Ok. }
$$

Thus, this expression will not converge to this root.
Example 2: Find the value of x which makes the function $f(x)=(2-x) e^{-x / 4}$ equal to $1 .\left(\varepsilon=1 \times 10^{-3}\right)$
Solution:

$$
\begin{aligned}
& f(x)=1 \quad \Rightarrow \quad(2-x) e^{-x / 4}=1, \\
& \therefore(2-x) e^{-x / 4}-1=0 \Rightarrow h(x)=0 . \text { (Root finding problem) }
\end{aligned}
$$

So we must find the root(s) of $h(x)$ where $h(x)=(2-x) e^{-x / 4}-1$.
Check the sign of $h(x)$ at different values of x : (not necessary)

x	-2	-1	0	1	2	3
$h(x)$	1.4	1.3	1	-0.22	-1	-1.47

Thus, there is a root lies between $x=0$ and $x=1$.

By using fixed point method, rearrange the equation $h(x)=0$ in the form $x=g(x)$:

$$
\begin{aligned}
& (2-x) e^{-x / 4}-1=0 \Rightarrow(2-x) e^{-x / 4}=1 \Rightarrow 2-x=\frac{1}{e^{-x / 4}} \\
& \left.2-x=e^{x / 4} \Rightarrow x=2-e^{x / 4} . \text { (in this expression } g(x)=2-e^{x / 4}\right)
\end{aligned}
$$

$\underline{1^{\text {st }} \text { iteration: }} \quad$ Let $x_{o}=1 \Rightarrow x_{1}=g\left(x_{o}\right) \quad \Rightarrow \quad x_{1}=g(1)=2-e^{(1) / 4}=0.715975$. $\underline{2^{\text {nd }} \text { iteration: }} \quad x_{1}=0.715975 \Rightarrow x_{2}=g(0.715975)=2-e^{(0.715975) / 4}=0.803987$. The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

i	x_{i}	$x_{i+1}=g\left(x_{i}\right)$	$\Delta_{i}=\left\|x_{i+1}-x_{i}\right\|$
0	1	0.715975	$0.28 \ldots$
1	0.715975	0.803987	$0.08 \ldots$
2	0.803987	0.777379	$0.02 \ldots$
3	0.777379	0.785485	8.1×10^{-3}
4	0.785485	0.783021	2.4×10^{-3}
5	0.783021	0.783771	$7.5 \times 10^{-4}<\varepsilon$

The root is $x_{\text {root }} \approx 0.783771$.

Note:

If we start with another possible expression of $x=g(x)$ like:

$$
\begin{aligned}
& (2-x) e^{-x / 4}-1=0 \Rightarrow e^{-x / 4}=\frac{1}{2-x} \Rightarrow \quad e^{x / 4}=2-x \\
& \frac{x}{4}=\ln |2-x| \Rightarrow x=4 \ln |2-x| . \quad(\text { In this expression } g(x)=4 \ln |2-x|)
\end{aligned}
$$

Then, we get the following results:

i	x_{i}	$x_{i+1}=g\left(x_{i}\right)$	$\Delta_{i}=\left\|x_{i+1}-x_{i}\right\|$
0	1	0	1
1	0	2.772589	$2.77 \ldots$
2	2.772589	-1.032034	$3.03 \ldots$
3	-1.032034	4.436934	$5.46 \ldots$ (divergence)

Thus, this expression does not converge to the required root. Therefore we must search for another expression of $x=g(x)$.

