<u>2- Fixed point Method</u>

A fixed point of a function g(x) is a real number p such that p = g(p). Graphically, fixed points of a function y = g(x) are the points of intersection of y = g(x) and y = x.

Fixed point method is used to determine roots of a function f(x) as follows:

- 1- Rearrange the equation f(x) = 0 in the form x = g(x) (so that x is on the left hand side of the equation).
- 2- Estimate an initial value to the root x_i and substitute it into g(x) to get $g(x_i)$.
- 3- An improved estimation of the root is determined from $x_{i+1} = g(x_i)$ and so on.

Notes:

- 1- Fixed point method has very slow convergence.
- 2- For determining an expected root, lies in the interval (a, b), a certain expression of x = g(x) seems to converge to this root if the absolute value of the slope of g(x) is less than the slope of y = x, that is |g'(x)|≤1 for all x∈(a,b).
- 3- A certain expression of x = g(x) may converge to one root at more.
- 4- If we can not get an expression of the form x = g(x), then we could add x to both sides. For example, we can rewrite the equation $\sin x = 0$ in the form $x = \sin x + x$.

Example 1: Find the maximum value of the function $y = x^3/3 - 1.1x^2 - 3.1x$

correct to three decimals.

Solution:

Maximum value of the function y occurs when y' = 0,

 $y' = x^2 - 2.2x - 3.1,$

Put $y'=0 \implies x^2-2.2x-3.1=0 \implies f(x)=0$ (Root finding problem)

So we must find the root(s) of f(x) where $f(x) = x^2 - 2.2x - 3.1$.

Check the sign of f(x) at different values of x: (not necessary)

x	- 2	- 1	0	1	2	3	4
f(x)	5.3	0.1	- 3.1	- 4.3	- 1.3	- 0.7	4.1

There are two roots: The first root lies between x = -1 and x = 0 and the second root lies between x = 3 and x = 4.

By using fixed point method, rearrange the equation f(x) = 0 in the form x = g(x):

$$x^{2} - 2.2x - 3.1 = 0,$$

either $x^{2} = 2.2x + 3.1 \implies x = \sqrt{2.2x + 3.1}$ (the first expression)
or $x.(x - 2.2) = 3.1 \implies x = \frac{3.1}{x - 2.2}$ (the second expression)
or $2.2x = x^{2} - 3.1 \implies x = \frac{x^{2} - 3.1}{2.2}$ (the third expression)

* For the first expression $x = \sqrt{2.2x + 3.1}$, <u>Convergence test:</u> (not necessary)

$$g(x) = \sqrt{2.2x + 3.1} \quad \Rightarrow \quad g'(x) = \frac{1.1}{\sqrt{2.2x + 3.1}},$$

- For the first root which \in (-1,0),

$$|g'(-1)| = \left|\frac{1.1}{\sqrt{2.2(-1)+3.1}}\right| = 1.16 > 1 \text{ Not Ok}, \qquad |g'(0)| = \left|\frac{1.1}{\sqrt{2.2(0)+3.1}}\right| = 0.62 \le 1 \text{ Ok}.$$

Thus, this expression will not converge to this root.

- For the second root which \in (3,4),

$$|g'(3)| = \left|\frac{1.1}{\sqrt{2.2(3)+3.1}}\right| = 0.35 \le 1 \text{ Ok}, \qquad |g'(4)| = \left|\frac{1.1}{\sqrt{2.2(4)+3.1}}\right| = 0.32 \le 1 \text{ Ok}.$$

Thus, this expression will converge to this root.

<u>1st iteration</u>: Let $x_0 = 3 \implies x_1 = g(x_0) \implies x_1 = g(3) = \sqrt{2.2(3) + 3.1} = 3.114482$.

<u>2nd iteration</u>: $x_1 = 3.114482 \implies x_2 = g(3.114482) = \sqrt{2.2(3.114482) + 3.1} = 3.154657$.

i	x _i	$x_{i+1} = g(x_i)$	$\Delta_i = \left x_{i+1} - x_i \right $
0	3	3.114482	0.11
1	3.114482	3.154657	0.04
2	3.154657	3.168635	0.01
3	3.168635	3.173483	8.2×10^{-3}
4	3.173483	3.175163	1.68×10^{-3}
5	3.175163	3.175745	$5.8 \times 10^{-4} < \varepsilon$

The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

The root is $x_{root} \approx 3.175745$.

 $y(3.175745) = (3.175745)^3 / 3 - 1.1(3.175745)^2 - 3.1(3.175745) = -4.924442.$

Notes:

1- Another arrangement for the above table of calculations may be used as below:

i	x _i	$\Delta_i = \begin{vmatrix} x_i - x_{i-1} \end{vmatrix}$
0	3	-
1	3.114482	0.11
2	3.154657	0.04
3	3.168635	0.01
4	3.173483	8.2×10 ⁻³
5	3.175163	1.68×10^{-3}
6	3.175745	$5.8 \times 10^{-4} < \varepsilon$

1- If we choose another initial values to the root, this expression will always converge to this root which lies in the interval (3,4), for example:

i	x _i	$\Delta = \left x_{i} - x_{i-1} \right $
0	- 1	-
1	0.948683	1.94
2	2.277521	1.32
3	2.847902	0.57
4	3.060292	0.21
5	3.135704	0.07
6	3.162048	0.02
7	3.171199	9.15×10^{-3}
8	3.174372	3.17×10^{-3}
9	3.175471	1.1×10^{-3}
10	3.175852	$3.81 \times 10^{-4} < \varepsilon$

i	x _i	$\Delta = \begin{vmatrix} x_i - x_{i-1} \end{vmatrix}$
0	7	-
1	4.301163	2.69
2	3.544370	0.75
3	3.301153	0.24
4	3.219089	0.08
5	3.190924	0.02
6	3.181200	9.7×10^{-3}
7	3.177836	3.3×10^{-3}
8	3.176671	1.1×10^{-3}
9	3.176268	$4 \times 10^{-4} < \varepsilon$

* For the second expression $x = \frac{3.1}{x - 2.2}$, Convergence test: (not necessary)

$$g(x) = \frac{3.1}{x - 2.2} \implies g'(x) = \frac{-3.1}{(x - 2.2)^2}$$

- For the first root which $\in (-1,0)$,

$$|g'(-1)| = \left|\frac{-3.1}{(-1-2.2)^2}\right| = 0.3 \le 1 \text{ Ok},$$
 $|g'(0)| = \left|\frac{-3.1}{(0-2.2)^2}\right| = 0.64 \le 1 \text{ Ok}.$

Thus, this expression will converge to this root.

- For the second root which \in (3,4),

$$|g'(3)| = \left|\frac{-3.1}{(3-2.2)^2}\right| = 4.8 > 1$$
 Not Ok, $|g'(4)| = \left|\frac{-3.1}{(4-2.2)^2}\right| = 0.96 \le 1$ Ok.

Thus, this expression will not converge to this root.

<u>1st iteration:</u> Let $x_o = -1 \Rightarrow x_1 = g(x_o) \Rightarrow x_1 = g(-1) = \frac{3.1}{(-1) - 2.2} = -0.96875.$ <u>2nd iteration:</u> $x_1 = -0.96875 \Rightarrow x_2 = g(-0.96875) = \frac{3.1}{(-0.96875) - 2.2} = -0.978304.$

The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

i	x _i	$x_{i+1} = g(x_i)$	$\Delta_i = \left x_{i+1} - x_i \right $
0	- 1	- 0.96875	0.031
1	- 0.96875	- 0.978304	9.5×10 ⁻³
2	- 0.978304	- 0.975363	2.9×10^{-3}
3	- 0.975363	- 0.976266	$9 \times 10^{-4} < \varepsilon$

The root is $x_{root} \approx -0.976266$.

$$y(-0.976266) = (-0.976266)^3 / 3 - 1.1(-0.976266)^2 - 3.1(-0.976266) = 1.667862.$$

Thus, the maximum value of y is 1.667862, approximately.

Note:

If we want to know which root would the third expression $x = \frac{x^2 - 3.1}{2.2}$ converge to, then we could use the convergence test:

$$g(x) = \frac{x^2 - 3.1}{2.2} \implies g'(x) = \frac{x}{1.1},$$

- For the first root which \in (-1,0),

$$|g'(-1)| = \left|\frac{-1}{1.1}\right| = 0.91 \le 1 \text{ Ok},$$
 $|g'(0)| = \left|\frac{0}{1.1}\right| = 0 \le 1 \text{ Ok}.$

Thus, this expression will converge to this root.

- For the second root which \in (3,4),

$$|g'(3)| = \left|\frac{3}{1.1}\right| = 2.7 > 1$$
 Not Ok, $|g'(4)| = \left|\frac{4}{1.1}\right| = 3.6 > 1$ Not Ok.

Thus, this expression will not converge to this root.

Example 2: Find the value of x which makes the function $f(x) = (2-x)e^{-x/4}$ equal

to 1. (
$$\mathcal{E} = 1 \times 10^{-3}$$
)

Solution:

$$f(x) = 1 \implies (2-x)e^{-x/4} = 1,$$

$$\therefore (2-x)e^{-x/4} - 1 = 0 \implies h(x) = 0. \text{ (Root finding problem)}$$

So we must find the root(s) of h(x) where $h(x) = (2-x)e^{-x/4} - 1$.

Check the sign of h(x) at different values of x: (not necessary)

x	- 2	- 1	0	1	2	3
h(x)	1.4	1.3	1	- 0.22	- 1	- 1.47

Thus, there is a root lies between x = 0 and x = 1.

By using fixed point method, rearrange the equation h(x) = 0 in the form x = g(x):

$$(2-x)e^{-x/4}-1=0 \implies (2-x)e^{-x/4}=1 \implies 2-x=\frac{1}{e^{-x/4}},$$

$$2-x=e^{x/4} \implies x=2-e^{x/4}$$
. (in this expression $g(x)=2-e^{x/4}$)

<u>1st iteration:</u> Let $x_o = 1 \implies x_1 = g(x_o) \implies x_1 = g(1) = 2 - e^{(1)/4} = 0.715975$.

<u>2nd iteration:</u> $x_1 = 0.715975 \implies x_2 = g(0.715975) = 2 - e^{(0.715975)/4} = 0.803987.$

The calculations must be repeated and continued until $\Delta \leq \varepsilon$.

i	x _i	$x_{i+1} = g(x_i)$	$\Delta_i = \left x_{i+1} - x_i \right $
0	1	0.715975	0.28
1	0.715975	0.803987	0.08
2	0.803987	0.777379	0.02
3	0.777379	0.785485	8.1×10^{-3}
4	0.785485	0.783021	2.4×10^{-3}
5	0.783021	0.783771	$7.5 \times 10^{-4} < \varepsilon$

The root is $x_{root} \approx 0.783771$.

Note:

If we start with another possible expression of x = g(x) like:

$$(2-x)e^{-x/4} - 1 = 0 \implies e^{-x/4} = \frac{1}{2-x} \implies e^{x/4} = 2-x,$$

$$\frac{x}{4} = \ln|2-x| \implies x = 4\ln|2-x|. \quad \text{(In this expression } g(x) = 4\ln|2-x|\text{)}$$

Then, we get the following results:

i	x _i	$x_{i+1} = g(x_i)$	$\Delta_i = \left x_{i+1} - x_i \right $
0	1	0	1
1	0	2.772589	2.77
2	2.772589	-1.032034	3.03
3	-1.032034	4.436934	5.46 (divergence)

Thus, this expression does not converge to the required root. Therefore we must search for another expression of x = g(x).